.venv deleted

ocr ready to test
This commit is contained in:
2025-11-29 12:29:08 +03:00
parent 449556c4e4
commit 91923b8616
2094 changed files with 562 additions and 370942 deletions

97
ocr-service/imgproc.py Normal file
View File

@@ -0,0 +1,97 @@
import cv2
import numpy as np
import logging
logger = logging.getLogger(__name__)
def order_points(pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def four_point_transform(image, pts):
rect = order_points(pts)
(tl, tr, br, bl) = rect
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype="float32")
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
return warped
def preprocess_image(image_bytes: bytes) -> np.ndarray:
"""
Возвращает БИНАРНОЕ (Ч/Б) изображение для Tesseract.
"""
nparr = np.frombuffer(image_bytes, np.uint8)
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if image is None:
raise ValueError("Could not decode image")
# Ресайз для поиска контуров
ratio = image.shape[0] / 500.0
orig = image.copy()
image_small = cv2.resize(image, (int(image.shape[1] / ratio), 500))
gray = cv2.cvtColor(image_small, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(gray, 75, 200)
cnts, _ = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]
screenCnt = None
found = False
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
if len(approx) == 4:
screenCnt = approx
found = True
break
# Изображение, с которым будем работать дальше
target_img = None
if found:
logger.info("Receipt contour found (Tesseract mode).")
target_img = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)
else:
logger.warning("Receipt contour NOT found. Using full image.")
target_img = orig
# --- Подготовка для Tesseract (Бинаризация) ---
# Переводим в Gray
gray_final = cv2.cvtColor(target_img, cv2.COLOR_BGR2GRAY)
# Адаптивный порог (превращаем в чисто черное и белое)
# block_size=11, C=2 - классические параметры для текста
thresh = cv2.adaptiveThreshold(
gray_final, 255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2
)
# Немного убираем шум
# thresh = cv2.medianBlur(thresh, 3)
return thresh