Files
rmser/ocr-service/app/main.py

159 lines
6.4 KiB
Python

import logging
import os
from typing import List
from fastapi import FastAPI, File, UploadFile, HTTPException
from pydantic import BaseModel
import cv2
import numpy as np
# Импортируем модули
from app.schemas.models import ParsedItem, RecognitionResult
from app.services.qr import detect_and_decode_qr, fetch_data_from_api, extract_fiscal_data
# Импортируем новый модуль
from app.services.ocr import yandex_engine
from app.services.llm import llm_parser
from app.services.excel import extract_text_from_excel
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
app = FastAPI(title="RMSER OCR Service (Cloud-only: QR + Yandex + GigaChat)")
@app.get("/health")
def health_check():
return {"status": "ok"}
@app.post("/recognize", response_model=RecognitionResult)
async def recognize_receipt(image: UploadFile = File(...)):
"""
Стратегия:
1. Excel файл (.xlsx) -> Извлечение текста -> LLM парсинг
2. QR Code + FNS API (Приоритет 1 - Идеальная точность)
3. Yandex Vision OCR + LLM (Приоритет 2 - Высокая точность, если настроен)
Если ничего не найдено, возвращает пустой результат.
"""
logger.info(f"Received file: {image.filename}, content_type: {image.content_type}")
# Проверка на Excel файл
if image.filename and image.filename.lower().endswith('.xlsx'):
logger.info("Processing Excel file...")
try:
content = await image.read()
excel_text = extract_text_from_excel(content)
if excel_text:
logger.info(f"Excel text extracted, length: {len(excel_text)}")
logger.info("Calling LLM Manager to parse Excel text...")
excel_result = llm_parser.parse_receipt(excel_text)
return RecognitionResult(
source="excel_llm",
items=excel_result["items"],
raw_text=excel_text,
doc_number=excel_result["doc_number"],
doc_date=excel_result["doc_date"]
)
else:
logger.warning("Excel file is empty or contains no text")
return RecognitionResult(
source="none",
items=[],
raw_text=""
)
except Exception as e:
logger.error(f"Error processing Excel file: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Error processing Excel file: {str(e)}")
# Проверка на изображение
if not image.content_type.startswith("image/"):
raise HTTPException(status_code=400, detail="File must be an image or .xlsx file")
try:
# Читаем сырые байты
content = await image.read()
# Конвертируем в numpy для QR
nparr = np.frombuffer(content, np.uint8)
original_cv_image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if original_cv_image is None:
raise HTTPException(status_code=400, detail="Invalid image data")
# --- ЭТАП 1: QR Code Strategy ---
logger.info("--- Stage 1: QR Code Detection ---")
qr_raw = detect_and_decode_qr(original_cv_image)
if qr_raw:
logger.info("QR found! Fetching data from API...")
api_items = fetch_data_from_api(qr_raw)
if api_items:
logger.info(f"Success: Retrieved {len(api_items)} items via QR API.")
return RecognitionResult(
source="qr_api",
items=api_items,
raw_text=f"QR Content: {qr_raw}"
)
else:
logger.warning("QR found but API failed. Falling back to OCR.")
else:
logger.info("QR code not found. Proceeding to OCR.")
# --- ЭТАП 2: OCR + Virtual QR Strategy ---
if yandex_engine.is_configured():
logger.info("--- Stage 2: Yandex Vision OCR + Virtual QR ---")
yandex_text = yandex_engine.recognize(content)
if yandex_text and len(yandex_text) > 10:
logger.info(f"OCR success. Raw text length: {len(yandex_text)}")
# Попытка собрать виртуальный QR из текста
virtual_qr = extract_fiscal_data(yandex_text)
if virtual_qr:
logger.info(f"Virtual QR constructed: {virtual_qr}")
api_items = fetch_data_from_api(virtual_qr)
if api_items:
logger.info(f"Success: Retrieved {len(api_items)} items via Virtual QR API.")
return RecognitionResult(
source="virtual_qr_api",
items=api_items,
raw_text=yandex_text
)
# Вызываем LLM для парсинга текста
logger.info("Calling LLM Manager to parse text...")
yandex_result = llm_parser.parse_receipt(yandex_text)
return RecognitionResult(
source="yandex_vision_llm",
items=yandex_result["items"],
raw_text=yandex_text,
doc_number=yandex_result["doc_number"],
doc_date=yandex_result["doc_date"]
)
else:
logger.warning("Yandex Vision returned empty text or failed. No fallback available.")
return RecognitionResult(
source="none",
items=[],
raw_text=""
)
else:
logger.info("Yandex Vision credentials not set. No OCR available.")
return RecognitionResult(
source="none",
items=[],
raw_text=""
)
except Exception as e:
logger.error(f"Error processing request: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=5000)