mirror of
https://github.com/serty2005/rmser.git
synced 2026-02-04 19:02:33 -06:00
134 lines
5.3 KiB
Python
134 lines
5.3 KiB
Python
import logging
|
||
import os
|
||
from typing import List
|
||
|
||
from fastapi import FastAPI, File, UploadFile, HTTPException
|
||
from pydantic import BaseModel
|
||
import cv2
|
||
import numpy as np
|
||
|
||
# Импортируем модули
|
||
from imgproc import preprocess_image
|
||
from parser import parse_receipt_text, ParsedItem
|
||
from ocr import ocr_engine
|
||
from qr_manager import detect_and_decode_qr, fetch_data_from_api
|
||
# Импортируем новый модуль
|
||
from yandex_ocr import yandex_engine
|
||
from llm_parser import llm_parser
|
||
|
||
logging.basicConfig(
|
||
level=logging.INFO,
|
||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||
)
|
||
logger = logging.getLogger(__name__)
|
||
|
||
app = FastAPI(title="RMSER OCR Service (Hybrid: QR + Yandex + Tesseract)")
|
||
|
||
class RecognitionResult(BaseModel):
|
||
source: str # 'qr_api', 'yandex_vision', 'tesseract_ocr'
|
||
items: List[ParsedItem]
|
||
raw_text: str = ""
|
||
|
||
@app.get("/health")
|
||
def health_check():
|
||
return {"status": "ok"}
|
||
|
||
@app.post("/recognize", response_model=RecognitionResult)
|
||
async def recognize_receipt(image: UploadFile = File(...)):
|
||
"""
|
||
Стратегия:
|
||
1. QR Code + FNS API (Приоритет 1 - Идеальная точность)
|
||
2. Yandex Vision OCR (Приоритет 2 - Высокая точность, если настроен)
|
||
3. Tesseract OCR (Приоритет 3 - Локальный фолбэк)
|
||
"""
|
||
logger.info(f"Received file: {image.filename}, content_type: {image.content_type}")
|
||
|
||
if not image.content_type.startswith("image/"):
|
||
raise HTTPException(status_code=400, detail="File must be an image")
|
||
|
||
try:
|
||
# Читаем сырые байты
|
||
content = await image.read()
|
||
|
||
# Конвертируем в numpy для QR и локального препроцессинга
|
||
nparr = np.frombuffer(content, np.uint8)
|
||
original_cv_image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||
|
||
if original_cv_image is None:
|
||
raise HTTPException(status_code=400, detail="Invalid image data")
|
||
|
||
# --- ЭТАП 1: QR Code Strategy ---
|
||
logger.info("--- Stage 1: QR Code Detection ---")
|
||
qr_raw = detect_and_decode_qr(original_cv_image)
|
||
|
||
if qr_raw:
|
||
logger.info("QR found! Fetching data from API...")
|
||
api_items = fetch_data_from_api(qr_raw)
|
||
|
||
if api_items:
|
||
logger.info(f"Success: Retrieved {len(api_items)} items via QR API.")
|
||
return RecognitionResult(
|
||
source="qr_api",
|
||
items=api_items,
|
||
raw_text=f"QR Content: {qr_raw}"
|
||
)
|
||
else:
|
||
logger.warning("QR found but API failed. Falling back to OCR.")
|
||
else:
|
||
logger.info("QR code not found. Proceeding to OCR.")
|
||
|
||
# --- ЭТАП 2: Yandex Vision Strategy (Cloud OCR) ---
|
||
# Проверяем, настроен ли Яндекс
|
||
if yandex_engine.oauth_token and yandex_engine.folder_id:
|
||
logger.info("--- Stage 2: Yandex Vision OCR ---")
|
||
|
||
# Яндекс принимает сырые байты картинки (Base64), ему не нужен наш препроцессинг
|
||
yandex_text = yandex_engine.recognize(content)
|
||
|
||
if yandex_text and len(yandex_text) > 10:
|
||
logger.info(f"Yandex OCR success. Text length: {len(yandex_text)}")
|
||
logger.info(f"Yandex RAW OUTPUT:\n{yandex_text}")
|
||
yandex_items = parse_receipt_text(yandex_text)
|
||
logger.info(f"Parsed items preview: {yandex_items[:3]}...")
|
||
# Если Regex не нашел позиций (как в нашем случае со счетом)
|
||
if not yandex_items:
|
||
logger.info("Regex found nothing. Calling YandexGPT for semantic parsing...")
|
||
iam_token = yandex_engine._get_iam_token()
|
||
yandex_items = llm_parser.parse_with_llm(yandex_text, iam_token)
|
||
logger.info(f"Semantic parsed items preview: {yandex_items[:3]}...")
|
||
|
||
return RecognitionResult(
|
||
source="yandex_vision",
|
||
items=yandex_items,
|
||
raw_text=yandex_text
|
||
)
|
||
else:
|
||
logger.warning("Yandex Vision returned empty text or failed. Falling back to Tesseract.")
|
||
else:
|
||
logger.info("Yandex Vision credentials not set. Skipping Stage 2.")
|
||
|
||
# --- ЭТАП 3: Tesseract Strategy (Local Fallback) ---
|
||
logger.info("--- Stage 3: Tesseract OCR (Local) ---")
|
||
|
||
# 1. Image Processing (бинаризация, выравнивание)
|
||
processed_img = preprocess_image(content)
|
||
|
||
# 2. OCR
|
||
tesseract_text = ocr_engine.recognize(processed_img)
|
||
|
||
# 3. Parsing
|
||
ocr_items = parse_receipt_text(tesseract_text)
|
||
|
||
return RecognitionResult(
|
||
source="tesseract_ocr",
|
||
items=ocr_items,
|
||
raw_text=tesseract_text
|
||
)
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error processing request: {e}", exc_info=True)
|
||
raise HTTPException(status_code=500, detail=str(e))
|
||
|
||
if __name__ == "__main__":
|
||
import uvicorn
|
||
uvicorn.run(app, host="0.0.0.0", port=5000) |